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Climate change presents critical challenges to the management and 
operations of water and wastewater infrastructure. Rising sea levels, 
increasing storm intensities, longer drought periods, and more frequent 
heat waves all affect a community’s ability to manage and protect source 
waters, supply clean drinking water, collect and treat wastewater, and 
mitigate flood hazards. In many cases communities are faced with 
planning for not just one, but multiple overlapping future  
climate change threats.

RESILIENCY

Communities across the country and around the world are 
faced with the challenge of managing risks and enhancing 

resiliency in the face of increasing climate hazards.

The good news is that most communities don’t have to start 
from ground zero to take effective steps in resiliency planning. 
Models and other already available data within a city/town, 
or in the broader scientific/public domain, can be used as 
the foundation to build upon. Hazen has pioneered several 
innovative tools and approaches to build from those existing 
tools and take the next steps: identifying and assessing 
risks and vulnerabilities; evaluating cost-effective resiliency 
strategies; and implementing a plan for adaptation.

Hazen has 
developed and 
implemented 
effective resiliency 
frameworks and 
innovative tools 
to support robust 
climate change 
planning and risk 
mitigation.

Vulnerability Assessment and 
Risk Management Tools
Decision Support Tool 
A user-friendly multi-criteria 
decision support tool. This tool 
facilitates effective stakeholder 
engagement in the prioritization 
of project goals across social, 
environmental, economic, and 
technical considerations.

Above: The Inundation Model viewer, developed 
by Hazen for the Boston Water and Sewer 
Commission, displays 360-degree photographic 
renderings of landmark locations in the city to 
illustrate potential flooding alongside recognizable 
landmarks for intuitive public understanding.

HazenQ     
Provides quick and easy 
management of flow monitoring  
data and calibrates hydraulic  
models, essential steps in identifying 
flood risks in collection systems.

StormSight     
Cost-effectively sifts through 
decades of historical rainfall data 
and derives storm intensity, depth, 
and duration statistics for a variety 
of return frequencies. 
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Climate risks differ throughout the country, requiring that resiliency strategies be tailored 
based on each utility’s specific circumstances. The following case studies include projects 

from a diverse mix of geographies, using a range of resiliency strategies.

For the Boston Water and 
Sewer Commission (bwsc.org), 
Hazen used existing 1D hydraulic 
models as a starting point to 
develop a 2D model that predicts 
flooding from varied coastal 
and rain events throughout the 
city. GIS tools assessed impacts 
and vulnerabilities to critical 
infrastructure resulting from 

different inundation scenarios. 
Hazen analyzed dynamic rainfall 
events (thunderstorm, frontal, 
tropical, nor’easter) for 2-year 
and up to 500-year frequencies, 
and developed a web-based ESRI 
story map with a custom flooding 
results viewer. Several 360-degree 
photographic renderings were 
created of landmark locations 

throughout the city to clearly 
illustrate potential flooding within 
streets, against buildings, and 
more. This unique delivery of 
what has historically been very 
complex modeling data allows for 
a very distilled communication of 
flooding impacts to a wide variety 
of audiences, both technical and 
non-technical.
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Like many other coastal 
communities in South Florida, 
the City of Fort Lauderdale  
is grappling with the challenges 
associated with creating a resilient 
future in the face of climate change, 
and particularly rising sea levels. 
With much of the city having 
ground elevations just a few feet 
above current mean sea level and 
more than 160 miles of waterways 
traversing the city, the task at hand 

is critical and complex. 

In 2016, the city selected Hazen 
to assist with its Stormwater 
Masterplan Modeling and Design 
Implementation efforts, a major 
component of which is resiliency 
in the face of climate change. One 
of the primary tools used in this 
long-range, carefully phased battle 
is a comprehensive hydrologic and 
hydraulic (H&H) model. Historical 

modeling efforts in the city and 
throughout the region were not 
sufficient, as they did not simulate 
the interaction between surface 
and groundwater in robust  
enough fashion.

Hazen built upon the city’s 
existing information by selecting 
a modeling platform, collecting 
data, and building a model that 
appropriately connects surface
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and groundwater. This tool 
has already been used to begin 
designing stormwater/resiliency 
infrastructure investments in 
seven initial areas of the city, 
and will be a dynamic tool in 
further assessing, planning, and 
designing improvements and 
enacting policies to help ensure the 
resiliency and prosperity of Fort 
Lauderdale for decades to come.

Orange County (CA) Sanitation 
District was one of the first 
wastewater agencies to 
conduct a comprehensive climate 
change resiliency study, with 
the objective of identifying and 
mitigating risks to the operation 
of two treatment facilities, 15 
pump stations, and a significant 
capital improvement program.

Using the City’s existing record 
drawings and other accessible 
information as a starting point, 
Hazen assessed flooding and 
sea level rise using FEMA 100-
year and 500-year flood levels. 
California’s 4th Climate Change 

Assessment was used to develop 
projections for sea level rise 
for 2050 and 2070. Wildfire 
and extreme heat risks were 
also evaluated using data from 
California’s 4th Climate Change 
Assessment and the state’s Cal-
Adapt website.

Four categories of adaptation 
strategies were evaluated for OCSD 
facilities: boundary, building, 
asset, and operation. Selected 
strategies included revised 
emergency response plans and 
design guidelines specific to the 
locations and risks to each piece of 
critical infrastructure.

For example, the Sanitation 
Districts of Los Angeles County 
and the City of Simi Valley 
have reclamation facilities in 
communities surrounded by 
forest and brush that have more 
vulnerability to wildfire, in desert 
communities more likely to 
experience high heat, and adjacent 
to rivers subject to flooding from 
changing precipitation patterns.

As a result of this work, Southern 
California’s essential wastewater 
facilities can be better prepared and 
resilient to the effects of climate.
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Ocean

Intracoastal
Waterway

Potable Water
Supply Well

Shift in fresh/salt water interface due to SLR

SEA LEVEL

Sea Level Rise (SLR)

Fresh
Groundwater

Saltwater
Intrusion

Base of Biscayne Aquifer
Much of South Florida is built atop the 
Biscayne Aquifer, a highly permeable geologic 
formation and great source of high-quality fresh 
water. Rising sea levels will advance saltwater 
intrusion, affecting water supplies, increasing 
seepage across tidal barriers, and complicating 
flood control efforts.

Intuitive visualizations were developed to help illustrate 
potential vulnerabilities using existing record drawings.
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100-yr FEMA Flood
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Elev -3.1

100-yr FEMA Flood 
+ 2050 SLR

Elev 9.5

2 - 40 HP Motors
and TWAS Pumps

Tremblay
Tunnel

3 - 60 HP Motors
and WSS Pumps

DAFT GALLERY D and WSSPS 2A

100-yr FEMA Flood
Elev 8.0

2 - 3 HP Motors
and Sump Pumps
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The Clarksville (TN) 
Wastewater Treatment Plant  
is the only facility that provides  
wastewater treatment for 
more than 100,000 residents 
of Clarksville. When the 
Cumberland Basin received 
more than 20 inches of rain in 
less than 48 hours, it caused 
massive flooding and the levees 
and floodwalls surrounding the 
plant were overtopped and the 
plant was inundated and heavily 
damaged. 

Clarksville Gas & Water quickly 
contracted with Hazen to provide 
disaster recovery services and 
bring the facility back into 

operation as quickly as possible. 
As soon as floodwaters receded, 
the facility was dewatered to 
minimize impact to the levees and 
floodwalls and initial cleanup was 
completed. Primary treatment 
returned to operation just 10 days 
after the flooding. Even with the 
extensive damage to secondary 
treatment equipment and the 
biology of the plant completely 
lost, secondary treatment was 
also back in operation in less than 
three months. 

A new perimeter berm was raised 
above the 500-yr flood elevation 
and the existing stormwater 
pump station was improved to 

handle run-on generated from 
a 100-yr storm. Throughout the 
project, Hazen provided daily 
status updates to the Tennessee 
Department of Environment and 
Conservation on damage incurred 
and the recovery process. Once 
the event was declared a federal 
disaster, Hazen worked closely 
with FEMA representatives to 
develop proper justification 
and project worksheets for 
reimbursement of a portion of  
the recovery cost.

Clarksville Wastewater Treatment Plant – May 2010: Levees and floodwalls 
surrounding the Clarksville WTP were overtopped and the plant was inundated 

and heavily damaged after the Cumberland Basin received more than  
20 inches of rain in less than two days.

For more information contact:

Charles Wilson, PE 
cwilson@ 
hazenandsawyer.com
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Building a new facility or renovating aging 
assets is typically a significant investment of 
capital, staff time, and other resources. The time 
investment starts at the early stages of planning 
and continues to rise through design, construction, 
and commissioning. It does not stop there—an 
often-overlooked aspect of new facilities is moving 
as-built information into asset management systems, 
which can take weeks to months of manual labor. 
Every minor change must be tracked, recorded, and 
validated in the system. Similar impacts on resources 
and available staff hours include mapping the assets 
in GIS, determining and implementing maintenance 
schedules, and providing insight into the facility across 
functioning units.

Most utilities have the tools available at their fingertips 
to streamline this process and save time and money 
but have yet to harness the power of connecting the 
right applications. For example, most utilities already 
use GIS products and many are using CAD or BIM 
files to store data about their facilities, though few 
people within the organization can access the data in 

one location. Likewise, computerized maintenance 
management systems (CMMS) and enterprise 
asset management (EAM) systems are often siloed 
without direct linkages to available tools across the 
organization. This results in a fractured view into the 
operation of the utility with inefficiencies in collecting, 
visualizing, and acting on information.

To lessen the impact on staff and manpower, utilities 
can integrate software from multiple vendors, 
streamlining the collection and digitization of asset 
data. Visualizations of assets, maps, facilities, and 
more can be combined with BIM data from design and 
construction teams into a single application or website 
to support workers and work flow.

 The integration of applications and software licenses 
already owned by a utility can save hundreds of staff 
hours from routine tasks.

The following key terms and case studies demonstrate 
some of the most frequently used tools and outcomes 
from digital strategy development:

Saving Time Through Data 
Visualization and Application 

A Single Pane of Glass
This is a term used widely in the technology space to describe the ability to 
access information and visualizations of information from many different 
applications in a single place, such as a dashboard. A single pane of glass is 
ideal for utility staff who may not have or need licenses to each application 
but want to view the important results for their job function. It integrates 
information together in a way that is specific to the individual’s needs and links 
changes in one application (e.g., GIS) across all of the other applications (e.g., 
BIM, CMMS, 360 degree imagery, EAM). A user can deep dive into the specific 
components of a pump motor, look at the impact of future pump replacements 
on operating expenses and rates, and even analyze how to minimize those 
impacts through proactive maintenance—all using one application.
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Hazen and the Passaic Valley Sewerage Commission (PVSC) in New Jersey 
recently embarked upon a data management strategy to integrate BIM, GIS, and 
business intelligence systems into a single pane of glass. This digital strategy 
was deployed to enable secure and scalable data sharing between business 
groups and different enterprise IT systems, minimizing repetitive information 
and maximizing the usefulness of the data PVSC receives and creates.

The team worked with the PVSC IT Department, Microsoft, ESRI, and the PVSC 
GIS team to outline and implement a new ESRI Enterprise ArcGIS Portal in their 
Microsoft Azure Cloud, creating a single pane of glass for integrated viewing of 
building information data, geodata, operation data, and more. This initial phase 
also created the necessary cloud infrastructure to develop, test, and host Digital 
Twin technologies that represent near real-time information in 3D model view, 
2D plans and maps, and BI visuals. This seamless integration has allowed PVSC 
staff to analyze and visualize GIS data alongside other data sources.

CAS E  ST U DY

Creating Visibility 
and Insights Across 
the Organization 

The City of Nashua has been working with Hazen to manage the development 
of a “Collection System O&M Plan” as part of its wastewater NPDES Permit that 
covers the pipes, manholes, and pump stations in the sewer and stormwater 
systems. The data-rich program required collecting and analyzing data in a way 
that was accessible and easily viewed across the organization. It includes video, 
app-based GIS maps, condition assessment and risk management ratings, and 
work order tracking, all of which needed to be integrated through a web-based 
dashboard application.

After inspection with CCTV cameras, the status of each asset is added to 
ArcGIS Collector in real-time for both Hazen and the city to see. The map 
can also be edited, allowing for new assets or different configurations of 
previous map data to be added as needed. Hazen’s GIS updates and CMOM 
recommendations are available to the city in real-time through a web application 
hosted on the Hazen GIS Portal, with results and data trends displayed in Power 
BI. The Power BI report utilizes CCTV and CMOM GIS data to create a powerful 
and connected tool, with data refreshing on a scheduled interval to stay up to 
date. The report allows the city to track the inspection, data implementation, 
review, and revision progress for each water type using easy to understand 
visualizations such as tables, charts, and maps. 

CAS E  ST U DY

Collecting and 
Analyzing Data in 
Accessible Ways 

Dashboarding
Dashboards are typically created through packages such as PowerBI 
or Tableau, providing a means to quickly and easily view high-level data 
before drilling down into points of interest. By integrating the display 
capability of various software applications, dashboards can provide 
cross-enterprise insight through GIS maps, CMMS recommendations, 
and architectural and structural drawings. Integrated dashboards 
enhance each user’s access to information and minimize the downtime 
often required by requesting data, screenshots, maps, etc., from other 
work units within the utility.
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Integrating Technology 
Many vendors create snippets of code that help different software 
applications talk to one another, and the software that utilities already 
pay for very likely has this capability built in. Hazen leverages these 
communication tools to create new ways of connecting data and 
visualizing that information to create actionable insights. Leveraging 
existing licensing to create something new saves time and provides 
better clarity into the system.

The standard water industry model of distinct design, build, operation, and 
maintenance phases for facilities does not lend itself to the seamless transfer 
of data from one phase to the next. While developing Hampton Roads 
Sanitation District’s (HRSD) digital strategy for the District’s asset portfolio 
lifecycle, Hazen also created a framework for integrating asset management 
and O&M information with GIS and CMMS for the SWIFT Research Center.

Development of an intelligent BIM model with standard project templates 
and use of bridging software to sync and connect BIM data to CMMS and 
GIS allows consistency in format and presentation developed by varied 
stakeholders. Powerful visualization tools in the O&M stage provided a holistic 
understanding of a facility’s asset attributes, maintenance, and renewal and 
replacement status by use of automated color-coding and the ability to 
quickly access work order history.

BIM guidelines and standard practices for HRSD streamlines the collection 
of asset information during design, which improves future capital planning 
and O&M practices. Future facilities will be developed using this approach to 
connect data from design through long-term operations.

CAS E  ST U DY 

Standardizing Design Practices with BIM

Better Decisions Quicker
Hazen’s work on behalf of utilities in this space has been recognized by 
ESRI, AutoDesk, Microsoft, HoloBuilder, and more as an example of the 
benefits of integrating data across applications. Our clients have seen the 
benefits in the improved quality and efficiency of design and construction 
projects, compelling maps and visualizations of storm surge inundation 
to support the case for facility hardening, developing financial models 
that foster smart investment, and comprehensive asset management 
dashboards that improve efficiency and staff morale. No matter the 
application, the goal is to create a time-saving view into the function of a 
utility that drives efficiency, fosters the development of actionable insights, 
and enables staff to focus on the most important aspects of their work.

For more information contact:

Benjamin D. Stanford, Ph.D. 
bstanford@ 
hazenandsawyer.com

Ryan Nagel, PE, ENV SP 
rnagel@ 
hazenandsawyer.com

Jamie MacDonald 
jmacdonald@ 
hazenandsawyer.com
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With tremendous leaps in smart sensors and processing power for data 
analytics, the water utility industry is beginning to recognize and 

apply machine learning (ML) as a tool to optimize system operations 
in a way that was not possible even a few years ago.

As a branch of the broader field 
of artificial intelligence (AI), ML 
has vast possibilities for the water 
industry. At its simplest, machine 
learning is learning from data. 
Every day, various types of data 
are recorded on a massive scale 
throughout the water sector 
and ML can be used to analyze 
these complex datasets, helping 
operators by leveraging the 
objective and powerful capabilities 
of computers to identify and utilize 
patterns from the data that a 
human may not recognize. Machine 
learning models are developed 
through model training; the model 
is given a certain percentage of 
a data set (usually 75-80% of 
the data) and is then tested by 

predicting the rest of the data set, 
or “unseen data.”  Well-trained  
(or calibrated) ML models can 
explore and process massive and 
diverse datasets in real time while 
also providing rapid predictions 
and/or recommendations for 
operators—a difficult and 

sometimes impossible task for  
a human, especially in a short  
time frame. 

One common misconception 
is that ML tools will replace 
human operational decision 
making. Operational experience 
and expertise is fundamental to 
successful ML development and 
implementation.  Water experts are 
critical to integrating the science 
of water into model development. 
And once in production, it will 
always be important for a human 
to review the recommendations of 
the model, periodically verify the 
model is continuously learning, 
and apply their own judgment and 
experience to the question at hand. 

Human 
knowledge 
and decisions 
are critical to 
successful ML 
implementation

AI

ML

Human-in-
the-Loop 

ML

Review Verify

Apply

Expert Knowledge

Using 
Machine 
Learning
to Optimize 
Operations
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Machine 
Learning vs. 
Traditional 
Modeling
Models in the water industry have 
traditionally focused on known 
relationships derived from years 
of research. These mechanistic 
models simulate known 
relationships like Monod kinetics 
for the growth of organisms or the 
Manning equation  
for open channel flow. Those  
equations (rules) along with their 
inputs (data) can be coded directly 
into a computer model.  

The potential shortcomings of 
using mechanistic models in real-
time decision making may include 

that the model could be out-of-
date and/or not representative, 
the time it takes to obtain a result 
is too long to have practical use 
for an operator, or the model 
and the real-time data are not 
connected. 

ML offers an alternative approach 
that uses data and answers 
to learn rules, and uses error 
minimization algorithms to 
find the best way to represent a 
relationship between the data and 
the answers. ML can be used to 
gain insight into processes that 
are not well understood, or too 
complex to use a conventional 
equation, or when mechanistic 
models don’t represent the 
system well.  Some examples 
include predicting sludge settling 
characteristics or the percent total 
solids from a dewatering unit. 

Types and Levels of Machine Learning
Machine learning is highly scalable, flexible, and 

can provide different levels of insights to inform 

operations. This can include a  descriptive model 

(see figure on right) that provides an operator 

with informed decisions to more complex 

prescriptive models that recommend a particular 

action (i.e. set pump speed to 50%) or allow a 

computer to make the decision and implement 

the action. More importantly, a machine learning 

model is only as good as the data used for its 

“training.” For example, if a model predicts 

collection system flow and an upstream storage 

tank is built to attenuate flow, the ML model will 

have to be retrained to learn how the storage 

tank affects flow. This is also another example of 

the critical nature of the human element—while 

we call these models “smart,” they need human 

intelligence to be applied correctly.

A ductile iron pipe in Street X will break in 
Jan. 2021. Order 20 ft. of replacement pipe from 
Company Y and schedule repair in Dec. 2020.

A ductile iron pipe in Street X will break in 
Jan. 2021, due to age and corrosion.

A ductile iron pipe in Street X is broken, 
primarily due to the age of the pipe.

We have different types of pipe materials in 
Street X ranging in age from 10-to-50 years.

Complexity MORELESS

DESCRIPTIVE
Collect and report existing data.

PREDICTIVE
Detect patterns that signal impending events. 

DIAGNOSTIC
Examine causes of reduced 
performance or failure.

PRESCRIPTIVE
Identify measures to improve 
outcomes to correct problems.

Machine learning provides data and 
answers to an algorithm that then learns 
the rules and can make predictions. 

Traditional mechanistic modeling 
requires data and rules be coded 
into a model to provide an answer. 

A N S W E R S

RULE
SD

A
TA

Traditional
Modeling

R U L E S

ANSW
E

R
SD

A
TA

Machine
Learning
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ML Evaluation
and Retraining4ML Deployment3ML Development

and Training2

Exploratory Data Analysis
Explored which variables had strong 
links with future plant flow, for example, 
streamflow was closely correlated with 
future plant flow by linear regression. 

Data Visualization
Microsoft Power BI was  used for 
presenting the predicted results of 
the ML model. The dashboard 
includes a tool to estimate the 
optimal point to fill the equalization 
basin to maximize its utility.

Hourly flow predictions from the Azure 
pipeline are stored in the same SQL server, 
which Power BI queries hourly and displays 
the prediction.

Performance Evaluation
Comparing the prediction with the 
actual values quantifies accuracy 
and any need for retraining. 
Below we see how well the Raleigh 
model predicts a recent storm 
3 hours in advance.

Continuous Integration 
(Automated Retraining)
Retraining involves 
returning to the 
model training step 
and adding all the 
data gathered since 
the model was last 
deployed to the training 
data. The performance of 
a retrained model and the 
deployed model are then 
compared.

Real-time Data Connectivity
A pipeline was developed to gather 
real-time data in a SQL database for 
use by the model. This process  also 
included data screening and validation.
Past flow data from the plant was 
connected to SQL through Ignition 
software at the NRRRF.

Rainfall 
and USGS 
streamflow 
data were 
connected 
from third 
party APIs. 

Model Deployment
Azure Data Factory and ML Studio 
were used for deployment of the 
ML model. A pipeline was setup to 
pass the real time data from SQL 
to the ML model and return the 
predictions to SQL.

ML Model Development 
LSTM and XGBoost algorithms in Python 
were used to train a model to 6 years of 
data. The model had to predict 72 target 
variables; the flow predicted 1-to-72 hours 
from the current time.

Model Evaluation
The trained model was 
tested on 25% of the 
historical data to verify it 
made good predictions. 
A subset of the data was 
used to quantify the model’s 
performance specifically for 
wet weather events. 

Gather Historical Data

Gathered 6+ years of hourly flow 
data and hourly weather data that 
our subject matter experts thought 
would be relevant. This included 
rainfall and streamflow data with 
streamflow serving as a proxy for 
inflow and infiltration. 

Continuous Deployment
The more accurate model becomes 
the productionized version. This 
allows the model to stay current as 
system changes occur without 
having to rebuild the pipeline, thus 
maximizing the investment.

What problem do you 
want to solve?

Predict influent flow at the 
75-mgd NRRRF. ML tools were 
used to determine the optimal 
flow at which to utilize 
equalization so the retention 
time in the biological nutrient 
removal process is maximized. 
ML also integrated with the 
secondary clarifier guidance 
tool to determine how many 
clarifiers are required for a 
given flow, RAS flow, SVI, and 
MLSS concentration.

|    THE NRRRF CASE STUDY IS 
|    DESCRIBED ON PAGES 14-15

Machine 
Learning
Life Cycle
in a Case 
Study:
NEUSE RIVER RESOURCE 

RECOVERY FACILITY 

(NRRRF)  | RALEIGH, NC

Problem
Definition1

Note: Continuous training was not 
included in the Raleigh project but 
may be implemented in the future.

XG Boost
Model

Continuous Integration   |   Continuous Delivery
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The Three Types of Machine Learning
Unsu

per
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d

Reinforcement

Supervised

Machine learning covers a 
wide variety of approaches 
to generating insights from 
data. ML encompasses three 
prominent methods.

Unsupervised Learning    

can provide insights into variables that 
can be related.  In this case there is not  
a specific target variable one is trying 
to predict. With  unsupervised learning, 
algorithms can find commonalities and 
uncover complex relationships across 
many dimensions.

GOAL

Supervised Learning    

involves forecasting the value of 
a target variable such as influent 
wastewater flow given a combination 
of current known and/or forecasted 
conditions; or classifying a variable 
into different groups, such as low 
dosing or high dosing range for a 
chlorination system.  The goal is 
to provide specific output for an 
operator or a PLC to make a decision. 

Gain insights from data, without
specific target variable.

GOAL Achieve something specific,
such as predicting or 
classifying a target variable.

GOAL Optimize performance
of a system.

Reinforcement Learning    

is currently the least explored, but 
has tremendous value for process 
optimization and automation. This 
example model optimizes blower 
speed to maintain a specific DO 
setpoint and target effluent 
ammonia value by assigning 
rewards and penalties for being too 
high or too low; reinforcement 
learning could also include adding 
energy costs as penalities.  
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Current Streamflow (cfs)

Unsupervised Learning: K-means Clustering

Normal diurnal flow
Initial and tail-end 
of storm response
Just before and peak
of storm flow response

ML Evaluation
and Retraining4ML Deployment3ML Development

and Training2

Exploratory Data Analysis
Explored which variables had strong 
links with future plant flow, for example, 
streamflow was closely correlated with 
future plant flow by linear regression. 

Data Visualization
Microsoft Power BI was  used for 
presenting the predicted results of 
the ML model. The dashboard 
includes a tool to estimate the 
optimal point to fill the equalization 
basin to maximize its utility.

Hourly flow predictions from the Azure 
pipeline are stored in the same SQL server, 
which Power BI queries hourly and displays 
the prediction.

Performance Evaluation
Comparing the prediction with the 
actual values quantifies accuracy 
and any need for retraining. 
Below we see how well the Raleigh 
model predicts a recent storm 
3 hours in advance.

Continuous Integration 
(Automated Retraining)
Retraining involves 
returning to the 
model training step 
and adding all the 
data gathered since 
the model was last 
deployed to the training 
data. The performance of 
a retrained model and the 
deployed model are then 
compared.

Real-time Data Connectivity
A pipeline was developed to gather 
real-time data in a SQL database for 
use by the model. This process  also 
included data screening and validation. 
Past flow data from the plant was 
connected to SQL through Ignition 
software at the NRRRF.

Rainfall 
and USGS 
streamflow 
data were 
connected 
from third 
party APIs. 

Model Deployment 
Azure Data Factory and ML Studio 
were used for deployment of the 
ML model. A pipeline was setup to 
pass the real time data from SQL 
to the ML model and return the 
predictions to SQL.

ML Model Development 
LSTM and XGBoost algorithms in Python 
were used to train a model to 6 years of 
data. The model had to predict 72 target 
variables; the flow predicted 1-to-72 hours 
from the current time.

Model Evaluation
The trained model was 
tested on 25% of the 
historical data to verify it 
made good predictions. 
A subset of the data was 
used to quantify the model’s 
performance specifically for 
wet weather events. 

Gather Historical Data

Gathered 6+ years of hourly flow 
data and hourly weather data that 
our subject matter experts thought 
would be relevant. This included 
rainfall and streamflow data with 
streamflow serving as a proxy for 
inflow and infiltration. 

Continuous Deployment 
The more accurate model becomes 
the productionized version. This 
allows the model to stay current as 
system changes occur without 
having to rebuild the pipeline, thus 
maximizing the investment.

What problem do you 
want to solve?

Predict influent flow at the 
75-mgd NRRRF. ML tools were 
used to determine the optimal 
flow at which to utilize 
equalization so the retention 
time in the biological nutrient 
removal process is maximized. 
ML also integrated with the 
secondary clarifier guidance 
tool to determine how many 
clarifiers are required for a 
given flow, RAS flow, SVI, and 
MLSS concentration.

|    THE NRRRF CASE STUDY IS
|    DESCRIBED ON PAGES 14-15

Machine 
Learning
Life Cycle
in a Case 
Study:
NEUSE RIVER RESOURCE 

RECOVERY FACILITY 

(NRRRF)  | RALEIGH, NC
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The 75-mgd Neuse River 
Resource Recovery Facility 
(NRRRF) operated by Raleigh 
Water in North Carolina has a 
daily flow of 48 mgd and peak 
hydraulic capacity of 225 mgd.

The facility has stringent total 
nitrogen (TN) limits of less than 
3 mg/L at permitted flow, and a 
quarterly average effluent total 
phosphorus limit of 2 mg/L. High 
flows can impact the facility’s 
ability to meet these strict nutrient 
limits; influent flows increase 
dramatically during heavy and/
or sustained rainfall, which can 
shorten treatment time.

The NRRRF has a 32-million-
gallon equalization basin (EQ) 
to withhold a significant portion 
of the flow and load entering the 
facility during high flow events. 
Historically, NRRRF staff utilized 
collection system pump station 
data, weather forecasts, and 
experience to determine when 
to move flow into the EQ basin. 

Pump station data provided 
about 30-60 minutes of advance 
warning but could not predict if 
flows would continue to increase, 
leaving operators to use their 
own judgement and experience to 
optimize the utility of the EQ basin. 
Raleigh Water realized requiring a 
human to process the available data 
and recall how past storm events 
unfolded was neither practical nor 
efficient, and that it could benefit 
greatly from a quantitative model 
with the ability to predict the flow 
hydrograph in advance of and 
during a rainfall event.

Raleigh Water has a traditional 
collection system model and 
collection system flow monitors. 
The collection system model is 
an excellent tool for planning but 
is not equipped to provide flow 
forecasts in real-time, and the flow 
monitors are not predictive. Hazen 
determined that this would be an 
excellent opportunity to develop 
and implement a machine learning 
tool to provide real-time flow 
hydrograph forecasting. 

The model development process 
was conducted entirely on a 

Hydrograph
Each bar = 1 hr.

Green Bars=
Sufficient EQ

Orange= Insufficient EQ

Target Flow to BNR*

Plant staff utilized the live dashboard 
and predicted hydrograph to adjust 
the target flow to BNR until the EQ 
tank is optimally utilized (no orange 
appears above the target flow line).

Increase 
target flow 

until no 
orange.

*Biological Nutrient Removal

Holistic Wet Weather Management Combining Machine 
Learning, Treatment Plant Optimization, and Predicting 
Collection System Influent Flow Hydrographs 
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desktop computer. Hazen used 
supervised and unsupervised 
machine learning to gain insight 
into the input parameters that best 
predict future flow. The resulting 
model has 77 inputs, including 
streamflow, rainfall (past and 
predicted), and past plant flow. The 
ML algorithm was calibrated to 6 
years of historical data, covering 
38 storms, and the model accuracy 
was +/- 2.8 mgd for any point 
during the storm. Once the desktop 
model was developed, the project 
entered the deployment step. 

Azure and SQL were used for 
the automated data pipeline, 
with predictions displayed in a 
web-based Microsoft Power BI 
dashboard tool. The entire pipeline 
including data visualization 
dashboard was securely deployed 
to work alongside a closed SCADA 
network. The model errs on 
the side of being conservative, 
occasionally predicting a flow 
that is higher than the actual 
wastewater flow. Local streamflow 
surfaced as the most significant 
variable in predicting the peak 
flow, so models that predict future 
streamflow based on predicted 

rainfall quantities were also 
developed and incorporated into 
the ML model. 

The project was deployed in a 
test mode in December 2019 and 
completed in July 2020. Since 
then, at least eight major storm 
events—including Hurricane 
Isaias—have occurred and been 
predicted well beforehand. With 
this tool the plant implemented its 
wet weather standard operating 
protocol: putting 2 additional 
primary clarifiers online, then one 
additional BNR basin, and finally 
diverting flow to the EQ basin. 
Raleigh Water has employed wet 
weather equalization four times 
since the model was finalized and 
the equalization basin volume was 
never exceeded. The largest rainfall 
event involved 6.7 inches of rain 

over a 9-hour period with a peak 
rainfall intensity of 4.5 inches per 
hour. Seventeen of the available  
32 mg in the EQ basin were utilized 
and effluent quality the day after 
the storm was the same as the 
day prior, indicating the program 
helped the utility maintain superb 
nutrient removal and properly 
utilize its equalization volume.
 
The resultant model is an 
extremely valuable tool that 
provides operators with highly 
informed decisions, resulting in 
greater efficiency and reliability 
to meet stringent effluent limits. 
The model is responsive to real-
time measurements of streamflow, 
rainfall, and plant influent flow, 
and its accuracy generally improves 
the closer it gets to the wet weather 
event actually occurring. 

Using machine learning tools 
alongside expert knowledge will 
empower the water industry to 
make more informed and timely 
data-driven decisions. Machine 
learning is scalable and can be 
used to provide timely output for 
manual operational decisions, or 

to provide real time operational 
recommendations and even 
operational control. 

The practical application and 
planning  of ML in operations 
is expected to increase rapidly 
as sensor accuracy, prices, and 

communication speed continue 
to rapidly improve. The key is to 
understand the problem at hand, 
apply the right tool, understand 
its limitations, and include 
human expertise in all phases of 
development and deployment.  

For more information contact:

The Future of Machine Learning and Water

Comparison of observed flow and model predicted flow 12-hours in advance. 

Observered Flow (mgd)
Modeled 12-hour 
lead time prediction
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Katya Bilyk, PE 
kbilyk@ 
hazenandsawyer.com

Sean FitzGerald, PE 
sfitzgerald@ 
hazenandsawyer.com

Javad Roostaei, PhD 
jroostaei@ 
hazenandsawyer.com
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Basin water supply models are designed to simulate how 
storage and flow in networks of reservoirs and streams 
vary over time—from days to decades—using observed 
or proposed withdrawals by water users, return flows by 
dischargers, reservoir operations and evaporation losses, 
inter-basin transfers, and any other human or natural 
process that impacts the basin water balance. 

These models are used to evaluate the system-wide impacts of 
local water decisions and use on availability, water quality, and 
other criteria basin-wide. They are often used to support basin-wide 
regulatory planning and permitting, resolve disputes among water 
users, inform environmental impact assessments, detect supply risk 
due to drought, and evaluate future operational and structural options 
for improving supply reliability. Models may also include integration 
with real-time data systems for operational decision-support, inflows 
under climate change scenarios or paleoclimate conditions, and/or 
water quality models. Basin water supply models are typically developed 
through several common tasks, illustrated on the following page.

River Basin 
Water Supply 
Modeling
The  predecessors to 
today’s sophisticated river 
basin models originated 
in the 1940s with scaled 
down physical models 
of river systems like the 
Mississippi.

Water could be added in 
large volumes “upstream” 
to gauge where flooding 
might occur and 
infrastructure could be 
added to simulate the 
impact of a new dam or 
reservoir on those same 
flood conditions.

These models were 
developed with an 
understanding that local 
management of river 
processes was imperfect 
– that a bigger picture, 
holistic view was needed 
for effective management. 

Over time, these 
physical systems 
were represented with 
electrical analogs, 
then with resistors and 
capacitors, equations, and 
ultimately with computer 
software. As computer 
power increased over 
time, the level of detail 
and sophistication of 
models advanced.

Old Postcard 
of model.
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Identify the problem to be solved 
and performance metrics for 

decision making. 

Use the network to show how water 
flows between reservoirs, withdrawers, 
dischargers, streams, pipes, aqueducts, 

and other locations of interest.

Run historical inputs of runoff, 
baseflow, withdrawals, discharges, 

and reservoirs to validate the model, 
comparing them to gage flows and/or 

historical reservoir elevations.

Apply the model to 
simulate the impact of 

changes to the system in 
order to develop solutions 

to the problems posed in 
Step 1. The flexibility of the 

model allows for an array of 
possible applications, 

including some that may 
not have been anticipated 

beforehand.

Use model logic to describe 
current, past, or proposed 
future water actions by 
emulating the effects of 
human-controlled actions 
at predetermined time 
intervals. Logic controls how 
much water is transferred from 
one node to another at each 
time step, while also enforcing 
priorities and limits on uses.

KEY BENEFITS

Hazen’s Basin Water Supply Modeling
The model is a flexible, living tool that 

can help answer vital questions 
supporting adaptive management.

MODEL TEMPLATE
Basin water supply models are typically 

built through a series of sequential tasks.

Dispute 
Resolution

Water Use
Planning

Water Use
Permitting

Operations
Optimization

Drought Forecasting
and Response

How does 
basin respond 
to current uses 
under past 
hydrology?

How does 
basin respond 
differently 
with future 
uses?

How does 
basin respond 
to changes in 
hydrology or 
climate?

How do human 
uses impact 
one another? 
Environmental 
needs?

1

3

2

1 2

3

Frame Scale & Scope of Model Draw River Basin Network Perform Water System Balance

Develop Model Logic Apply Model
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Colorado River 
Basin Modeling 
Supports Local 
Planning EffortsC
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The Colorado River Basin 
spans seven states and 
encompasses 252,000 square 
miles. It serves more than 40 
million people as well as over 
5 million acres of farmland 
and is an important economic 
and water resource locally 
and nationally. Inflow varies 
greatly, and as demands 
have increased and drought 
persists, the need to prepare 
for the range of potential future 
conditions is paramount. 

The Colorado River Simulation System (CRSS) basin model  
was developed in the 1970s by the Bureau of Reclamation and translated 
to the RiverWare software platform in the 1990s. The model uses inflow 
and demand data along with usage rules to route water through the 
system and is intended to be used for long-term planning, short-term 
operational planning, and regional or local planning. Long-term projections 
were used most recently in the Colorado River Basin Study (2012) that 
examined potential alternatives to mitigate projected future gaps in supply 
and demand through 2060.

Colorado River Basin

U P P E R  BA S I N

LOW E R  BA S I N
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Historical Supply and Use | Projected Future Colorado River Basin Water Supply and Demand

NOTE: Water use and demand include Mexico’s allotment and losses such as those due to reservoir evaporation, 
native vegetation, and operational inefficiencies.

M E X I C O

COLORADO RIVER BASIN WATER SUPPLY AND DEMAND STUDY, U.S. DEPARTMENT OF THE INTERIOR BUREAU OF RECLAMATION, 2012

DE LUCASHEPLER PHOTOGRAPHY/SHUTTERSTOCK
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The output of CRSS provides insight into potential future conditions and 
the model is under continuous development with new features added 
to better represent the system and provide improved tools for decision 
making. It was most recently used by Hazen to inform efforts to develop 
the City of Santa Fe’s Water Resources Planning Model.

The CRSS has been the primary tool for evaluating water supply, 
operations, and environmental impacts. It was instrumental in developing 
guidelines and evaluating treaty minutes. Likewise, the model will continue 
to be important in evaluation of options as the interim guidelines for 
operations expire. 

Tennessee 
Duck River 
Basin Modeling 
Facilitates 
Consensus on 
Minimum Flows

In 2017, Hazen led an 
operations exercise 
using the OASIS model  
(see photo above) to 
test water management 
scenarios in a virtual 
drought before the next 
real drought hits.

C
A

S
E

 S
T

U
D

Y

River Basin models can play a key role in building relationships 
and solving problems with diverse and, at times, opposing 
stakeholder groups. When a model is developed collaboratively and/or 
transparently— fostering confidence in its outputs—negotiations, planning, 
and emergency responses can be grounded in the realistic conditions 
captured in the model.

Using Hazen’s OASIS modeling software, a planning effort was conducted 
on Duck River and Normandy Reservoir with a 100-year daily historical 
inflow record. Analysis showed that the system would be able to meet 
projected system demand and 
downstream flow targets for the next 
50 years with very high reliability. 
The Duck River Agency established 
a planning process to periodically 
review demand projections and other 
system requirements and in 2003, the 
Agency adopted its first basin water 
supply plan.

When a drought-of-record hit in 2007, 
both the model and relationships 
were already in place to negotiate 
acceptable flow and water use 
reductions. Trust in the model and 
between the various stakeholders 
helped to facilitate consensus on 
a drought response plan by the end of September and an environmental 
assessment by mid-October of that year. Operational changes were then 
adopted and continued through February 2008.

Hazen is currently using the basin model to evaluate allocation schemes that 
include a new withdrawal several river miles downstream from the existing 
utility intakes. Application of the OASIS model has provided a platform 
upon which regulators, utilities, and environmental stakeholders can reach 
consensus on key decisions in the Duck River basin. 
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Georgia Basin 
Modeling Facilitates 
Integrated Planning 
and Permitting 
Decisions
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State regulatory agencies 
often rely on river basin 
models for planning and 
permitting activities. Georgia 
Environmental Protection 
Division (GAEPD) has recently 
joined Kansas, North Carolina, 
and Tennessee in acquiring a 
state-wide license for Hazen’s 
OASIS software to support 
the state’s water withdrawal 
permitting activities and 
Statewide Water Plan 
development.

Assessing potential local and basin-wide impacts of new permits 
anywhere in the state necessitates an unusual combination of fine 
spatial resolution and large geographic scope.  

Through a pilot study for GAEPD, Hazen completed one such model for 
the Oconee, Ocmulgee, and Altamaha (OOA) River system which spans 
from eastern Atlanta and Athens to the coast near Brunswick. The OOA 
model includes each individual permitted withdrawal, outfall, and water 
supply reservoir on each reach and tributary, resulting in approximately 
850 individual nodes (compared to 11 planning nodes in the prior model for 
Statewide Water Plans in the same basin). To build a model of this complexity, 
Hazen devised several enhancements to automate modeling procedures 
that are normally performed manually, including schematic development, 
upstream-downstream location searching, and unimpaired inflow calculation 
incorporating microscale basin-wide rainfall/runoff models. 

The more granular model also benefits Statewide Water Plan updates, which 
have to contend with a range of stakeholders and could not previously take 
into account mitigation actions and corresponding impacts by individual 
users. With a runtime of only 5 minutes, the model can be applied in real-time 
during planning meetings. Through this and upcoming follow-up efforts, Hazen 
will develop similar models for all 15 major basins spanning the entire state. 
These models will be used to facilitate effective statewide planning to ensure 
that utilities, local governments, and regulatory agencies fully understand the 
implications of current and future surface water withdrawals, impoundments, 
and discharges on supply reliability. This effort indicates that value can 
be achieved efficiently in a package that can also be applied for future, 
collaborative decision making.  For more information contact:

Douglas Baughman 
dbaughman@ 
hazenandsawyer.com

Gregory Gates 
ggates@ 
hazenandsawyer.com

Megan Rivera 
mrivera@ 
hazenandsawyer.com

John Clayton 
jclayton@ 
hazenandsawyer.com

Steve Nebiker 
snebiker@ 
hazenandsawyer.com
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UTILITY TIPS

Maintaining Financial 
Resiliency During and After 
the COVID-19 Pandemic
Business shutdowns and stay-at-home orders  
resulting from the COVID-19 pandemic have 
significantly contracted America’s economy and 
quickly reshaped the demand for potable water and 
wastewater treatment at many utilities. Utility data 
indicates a dramatic decrease in water consumption by 
commercial, government/institutional, and industrial 
customers. Concurrently, residential demand has 
surged in many communities. Domestic wastewater 
generation patterns have followed a similar pattern.

The short-term 
magnitude of financial 
impacts to drinking  
water and wastewater 
utilities is projected to  
be quite large. 

In April, the American 
Water Works Association 
(AWWA) issued a report 
that estimates revenue 
losses of up to $15 billion 
or 20% on an annual 
basis at drinking water 
utilities. 

The National Association 
of Clean Water Agencies 
(NACWA) estimated 
wastewater revenues 
decreasing by $12.5 
billion. 

A survey conducted by 
AWWA during the first 
week of June reported 
that 32 percent of the 
respondents were 
experiencing a decline in 
revenues compared to 
the previous year.

The magnitude of financial 
impacts to individual utilities 
will be driven by customer 
demographics, local economic 
conditions, pre-COVID-19 
financial strength, and the 
duration and extent of the 
regional lockdown. Changes 
in the demand for water and 
wastewater services could 
have far reaching impacts on a 
utility’s creditworthiness, its rate 
affordability, and its capacity 
to execute capital investment 
plans to meet level of service  

objectives, including robust  
asset management. 

The pandemic has heightened 
the need for utilities to identify 
potential vulnerabilities to their 
long-term financial health and 
develop strategies to manage 
those risks. By taking a phased 
approach in addressing financial 
risks, utilities can improve 
resiliency, weather the COVID-19 
pandemic, and cope with other 
unforeseen disruptive events that 
may occur in the future. 

America’s water utilities entered the pandemic as one of the most 
financially healthy sectors in the U.S. economy. As such, most will 
be able to maintain their financial health in the face of continuing 
economic turbulence and uncertainty. However, moving forward 
all utilities should continuously review their financial management 
practices so that they emerge from this pandemic stronger than ever 
and prepared for whatever the future brings.
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Moving Forward
Across the country, utilities 
implemented emergency and 
business continuity plans at the 
onset of the COVID-19 pandemic to 
ensure seamless operation of their 
facilities and protection of their 
workers and the communities they 
serve by purchasing PPEs, rotating 
operations workers, and  
performing business functions 
remotely where feasible.

While some initiatives were 
implemented immediately, others 
can have progressively longer time 
horizons. Because the timing of 
businesses reopening is uncertain 
and will vary by location, progress 

will not be uniform or linear, 
especially if there are continued 
cycles of “reopening” and “closing” 
the economy. As the recovery 
ultimately begins to take hold, 
utilities should gain a greater insight 
into what the “new normal” will  
look like.

Although the financial impacts to 
water utilities have been highly 
variable and less severe than first 
expected, many uncertainties 
remain. Revenues may continue 
to be lower than normal; rate 
structures might become 
misaligned, unemployment rates 
might remain elevated, and low-

income households, who have been 
disproportionately impacted by the 
pandemic could face increasing 
affordability issues. As future spikes 
and further spread of COVID-19 are 
possible, and as the benefits of the 
Federal financial stimulus packages 
wane over time, additional water and 
sewer bill defaults are possible.  

Frequent, rapid changes in the status 
of (and response to) the pandemic 
makes predictions of long-term 
financial impacts more difficult. 
Changes in business practices 
and consumer preferences and 
behavior may have lasting effects 
that could affect future expectations 

and long-term outlooks. Utilities 
should consider potential longer-
term impacts of the pandemic on 
regulatory compliance, bond ratings, 
CIP planning, and the execution of 
mission critical projects with longer 
horizons. Utilities with AAA Bond 
ratings typically have more than a 
year of operational reserve while a 
less financially secure utility might 
fall short of even the minimum target 
of 90 days. Early indications are that 
utilities are carrying on with ongoing 
projects but are delaying new 
project startups to maintain cash 
reserves in a time of tremendous 
uncertainty.

Accordingly, it is important that 
utilities reassess all aspects of 
their financial management and 
identify strategies and policies 
that will enhance their financial 
resiliency to disruptive events 
such as the COVID-19 pandemic 
while considering the chance of 
future events with similar or even 
greater disruptive power. For 
example, it would be prudent to 
reassess whether consumption 
behavior has changed sufficiently 
to reassess the current rate 
structure and future water supply 
plans. Scenario planning can also 
be used as a “stress test” to help 
utilities identify where they are 

most vulnerable, so plans can be 
developed to manage and mitigate 
impacts should the pandemic 
continue or be confounded by other 
macroeconomic conditions.
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The Town of Nantucket in 
Massachusetts is a relatively 
affluent community and well-
known tourist destination.   
It also has a very substantial 10-
Year CIP estimated to cost $231.8 
million. Gauging the magnitude of 
impacts of the CIP on the Town’s 
finances, including the impacts 
on sewer rates and property taxes 
(the latter of which is used to fund 
much of the capital expenditures) 
was difficult because the Town did 
not have a robust planning tool.  
Nantucket tasked Hazen to 
perform a series of financial 
evaluations including 
a financial capability 
assessment, development 
of a dynamic rate model, 
and a financial investment 
timing model to prioritize 
and optimize the proposed 
investments.  
The series of financial 
evaluations identified— among 
other issues—that under the 
current rates the Town would PH
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Potential Financial Risks…
ISSUES
•	 Distribution of cash flow

•	 Large changes in revenue 
source allocation

•	 Maintaining staffing levels

•	 Disruption of CIP projects

•	 Loss of utility rate revenue

•	 Sustained reduction in 
projected revenue

•	 Misaligned rate structure

•	 Increased affordability issues

•	 Shortfalls in planned 
financing of CIPs

•	 Meeting regulatory 
requirements

•	 Bond rating downgrades

•	 CIP planning and execution 
disruptions of mission 
critical projects

PHASED APPROACH TO ADDRESSING FINANCIAL RISKS
•	 Conduct scenario planning to identify all 

potential impacts

•	 Review payment policies and procedures to 
maximize collected revenue

•	 Review rate structure to ensure revenue 
adequacy and equitable rate class 
allocation

•	 Review all critical financial metrics

•	 Evaluate State and Federal emergency 
assistance options

•	 Repriortize O&M and capital  
improvement expenditures

•	 Determine need and identify Federal, State, 
and Municipal funding assistance to further 
reduce capital costs (SRF, WIFIA loans)

•	 Identify potential opportunities for 
cross-training of management and 
operations staff

•	 Reassess rate levels and structure to cover 
changes in cost of service

•	 Optimize overall debt structure

•	 Leverage existing low interest rates to 
lock-in long-term savings

•	 Obtain competitive labor and construction 
materials costs given macroeconomic 
conditions

•	 Invest in Smart System Technologies 
including Advanced Meter Infrastructure

…From Unpredicted Events
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generate insufficient revenue 
in the Capital Improvement 
Reserve to cover debt service 
by 2024. Accordingly, the 
Town has conducted a detailed 
reassessment of its rates, its rate 
structure, and other financial 
management practices to ensure 

that sewer program costs are fully 
funded, debt service payments 
are covered, all costs are borne 
in an equitable manner, and that 
a robust planning process is put 
in place to ensure the financial 
health and resiliency of the 
Town’s Utility Department.  

These initiatives will not only 
ensure that the Town will meet all 
its financial obligations but will 
have built a planning process to 
ensure its financial health even 
under unpredictable, adverse 
economic conditions.

Alan Karnovitz, MPP 
akarnovitz@ 
hazenandsawyer.com

Grace Johns 
gjohns@ 
hazenandsawyer.com

Jack Kiefer 
jkiefer@ 
hazenandsawyer.com
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More on Economic and 
Financial Studies Support
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